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It is known that  the subgroup growth of finitely generated linear groups 
1o n 

is either polynomial or at least n ~ .  In this paper we prove the 

existence of a finitely generated group whose subgroup growth is of type 

n ~ .  This is the slowest non-polynomial subgroup growth 

obtained so far for finitely generated groups. The subgroup growth type 

nlog n is also realized. The proofs involve analysis of the subgroup struc- 

ture of finite alternating groups and finite simple groups in general. For 

example, we show there is an absolute constant c such that ,  if T is any 

finite simple group, then T has at most n c log n subgroups of index n. 
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1. I n t r o d u c t i o n  

Let G be a finitely generated residually finite group. For n > 1, let an(G) 

denote the number of subgroups of index n in G. The series {an(G)} has been 

the subject of intense investigation in the past decade (see [L2], [L3] and the 

references therein). Given a function f ,  we say that G has s u b g r o u p  g r o w t h  

t y p e  (or simply g r o w t h  type)  f ,  if there are positive constants b, c such that  

an(C) < f(n) ~ for all n, 

and 

an(G) >_ f(n) b for infinitely many n. 

Groups of polynomial subgroup growth (also referred to as PSG groups) have 

growth type n (provided they are not almost cyclic). These groups are virtually 

soluble of finite rank [LMS]. As for non-polynomial growth types, the slowest 
1o 

one which has been realized is n ~ .  For example, this is the growth type of 

SLd(Z) (d _> 3) and of other arithmetic groups in characteristic 0 which satisfy 

the congruence subgroup property [L1]. In fact, it is shown in [L1] that  n 1o, lo, 

is the minimal growth type of linear non-PSG groups. Moreover, the growth type 

of soluble linear non-PSG groups is at least 2 ~' [SSh]. 

The main purpose of this paper is to realize a non-polynomial growth type 

which out-does the bound for linear groups. Indeed we have: 

THEOREM 1.1: There exists a finitely generated group whose subgroup growth 

type is n ~ .  

We conjecture that  this result is best possible, in the sense that  the ~rowth 

type of any finitely generated non-PSG (discrete) group is at least n(lo~to~) 2 . 

This seems to be quite a challenging problem. In fact at the moment it is not 

even known whether there is any gap between polynomial and non-polynomial 

growth for finitely generated groups. 

Note, however, that  in non-finitely generated groups - -  or in finitely generated 

profinite groups - -  arbitrarily slow non-polynomial growth types can be realized 

[Sh2]. On the other hand, for pro-p groups there is a gap between polynomial and 

non-polynomial growth, and the minimal non-polynomial growth type is n l~ 

[ShX]. 

The gap question is a particular case of a more general problem, namely, finding 

out which growth types can be realized using finitely generated groups. While 
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it seems plausible that SLd(Fp[t]) (d >_ 3) and many other arithmetic groups in 

positive characteristic have growth type n l~ n, this has not yet been verified (it 

is shown in [L1] that  the growth type of such groups is bounded below by n l~ 

and bounded above by n l~ n). In fact, while there are many pro-p groups whose 

growth type is n l~ (cf. [Shl], [LSh]), this growth type has not yet been realized 

for finitely generated (discrete) groups. Using constructions similar to those used 

in the  proof of Theorem 1.1 we obtain the following. 

THEOREM 1.2: There exists a finitely generated group whose subgroup growth 

type is n l~ n. 

The groups obtained in Theorems 1.1 and 1.2 are both not linear. Their 

profinite completion is a direct product of a procyclic group with a cartesian 

product of infinitely many (pairwise non-isomorphic) finite simple groups Ti. In 

Theorem 1.1 the groups T~ are alternating, and the proof eventually boils down 

to counting subgroups in finite alternating groups At. 

We prove the following. 

THEOREM 1.3: There exists a constant c such that 

c 1o~; n 

an(At) <_ n ( l ~ 1 7 6  

for all t, n. 

In Theorem 1.2, the groups T~ are classical groups of Lie type (of unbounded 

rank), and in the course of the proof we determine their growth behaviour. In 

fact we obtain the following. 

There exists a constant c such that, for any finite simple group THEOREM 1.4: 

T, we have 

an (T) < n cl~ n 

for all n. 

We also obtain the following information on the number of generators of sub- 

groups of simple groups. 

PROPOSITION 1.5: There exists a constant c such that, for any finite simple 

group T and for any subgroup H < T, we have 

d(H) <_ clog IT: H I. 
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We also show that  the upper bounds in 1.3, 1.4 and 1.5 axe best possible (apart 

from the values of the constants). These results are of independent interest and 

could probably be used in other contexts. 

Our final result deals with subnormal subgroups of finitely generated groups. 

Let a$~(G) denote the number of subnormal subgroups of index n in the group 

G. If a~'~(G) <_ n c for some c and for all n, we say that G has p o l y n o m i a l  

s u b n o r m a l  s u b g r o u p  g rowth .  The problem of characterizing finitely gener- 

ated groups of polynomial subnormal subgroup growth is an interesting one. In 

fact several results which were obtained in the context of subgroup growth are 

really about the growth of subnormal subgroups (see, e.g., [MS, Theorem 3.9] 

showing that  prosoluble groups of polynomial subnormal subgroup growth have 

finite rank, as well as the main results of [SSh]). One could therefore hope that  

finitely generated groups of polynomial subnormal subgroup growth have a nice 

structure (e.g. that they are virtually soluble, or linear). We show below that  

this is not the case. In fact it turns out that the groups constructed in Theorems 

1.1 and 1.2 have polynomial subnormal subgroup growth. We therefore obtain: 

COROLLARY 1.6: Finitely generated residually finite groups of polynomial 

subnormal subgroup growth need not be virtually soluble, or linear. 

Additional results on subnormal subgroups in finitely generated groups are 

included in the forthcoming paper [LPSh]. We note that ideas from the theory of 

permutation groups are also useful in the study of groups of very fast subgroup 

growth (see [PSh]). 

Some words on the structure of this paper. In Section 2 we study the growth 

behaviour of finite alternating groups and prove Theorem 1.3. Section 3 is 

devoted to the proof of Theorem 1.4 and Proposition 1.5. The proofs of 1.3- 

1.5 rely (among other things) on small index theorems obtained by Liebeckin 

[Li]. 

In Section 4 we pass from finite groups to infinite groups. We define the groups 

used in Theorems 1.1 and 1.2 and determine their profinite completions. In fact 

the group used in Theorem 1.1 is a variant of a group which was originally 

constructed by B. H. Neumann [N] and reused in [LW] for different purposes. 

Replacing the symmetric groups in Neumann's construction by groups of Lie 

type, we obtain the group occurring in Theorem 1.2 (originally constructed in 

[LW]). It should be mentioned that,  though these groups have already appeared 

before, computing their profinite completion is not entirely obvious. 
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Finally, in Section 5 we put everything together and prove Theorem 1.1, 

Theorem 1.2, and Corollary 1.6. 

Our notation is rather standard. The minimal number of generators of a 

group G is denoted by d(G). The rank r(G) of G is the minimal integer r such 

that all finitely generated subgroups of G are r-generated. For profinite groups 

these notions are interpreted topologically. Similarly, when counting finite index 

subgroups of a profinite group G we restrict ourselves to open subgroups. Let 

sn(G) denote the number of subgroups of index at most n in a group G. The 

total number of subgroups of G is denoted by s(G). The profinite completion of 

an abstract group F is denoted by F. The closure of an abstract subgroup L of 

a profinite group G is denoted by L. All logarithms are to the base 2. 

2. G r o w t h  o f  a l t e r n a t i n g  g roups  

We start  with the following preliminary result. 

LEMMA 2.1: Let A be a subgroup of Sym(A) with orbits A1 , . . . ,  A~. Suppose 

that every orbit Ai has a partition into blocks of imprimitivity A~ such that 

(1) I~,~1 >_ b for some fixed b > 5. 

(2) The setwise stabiliser A~ of A~ acts on A~ as Sym(A~) or Alt(A{). 

Then every normal subgroup N o f A  can be generated by 31AI/b elements. 

Proo~ Denote by K the kernel of the action of A on the set of all blocks A~. 

Then A / K  has an embedding into St where t <<_ [A[/b is the total number of 

blocks. 

Now,  n is a normal  subgroup of  for each so acts on as Sym(ZX,'), 

Alt(A~), or 1. This gives a natural embedding of K into a direct product of 

symmetric groups. Denote by H the product of the corresponding alternating 

groups. Then K0 = H A K is clearly a subdirect product of alternating groups 

and so it is a direct product of at most t alternating groups. Fhrthermore, K/Ko  

is an elementary abelian 2-group of rank at most t. 

Suppose now that  N is a normal subgroup of A. Then N / N  n K ~- N K / K  <_ 

A / K  <_ St, and therefore N / N  N K can be generated by at most t - 1 elements 

[Jer]. Similarly, N n K / N  ~ Ko can be generated by at most t elements (since it 

is embedded in K/Ko).  

It is easy to see that N n K0 (as a normal subgroup of K0) is a direct product 

of at most t alternating groups (of degree > 5) and therefore it can be generated 
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by t + 1 elements [Wi]. The result follows. | 

PROPOSITION 2.2: There exists an absolute constant c such that 

an(At) < n .  2 c(l~176 /'or all n. 

Proo~ It  suffices to prove a similar bound on an(St) (as an(At) < a2n(St)). Let 

G < Sym(ft)  be a subgroup of index n, where If~l = t. We shall assume (as we 

may) that  t is rather large. 

C A S E  1: Suppose that  n < 2 t4/s. 

By a result of Liebeck [Li, Lemma 1.1] there is an integer m < t /2  and a 

subgroup Hm of Am such that  

H = Hm x At_m < G < Sm z St_m, 

and IG: HI _ 2. 

Clearly we have n _> (~) > 2 m and therefore m < t 4/5 (by our assumption 

on n). I t  follows that  ( t )  > tm/5 and therefore m < .~losn 
_ _ v l o g  t " 

I t  is proved in [Py] (using elementary arguments) that  the number of subgroups 

of Sm is at most 2 am~ for some fixed constant a > 0. The number of choices for 

m is at most 5 log n / log  t. The number of choices for an m element subset of ~ is 

< n. The  group Hm <_ Sm can be chosen in at most  2 < 2 ha/ ~ 

ways; once H -- Hm • At-m is given, G is obtained by adding to it (the inverse 

image of) a single (possibly trivial) element from Sm• S t - m / A t - m ,  and there are 

at most 2m! _< 2 m2 _< 2250~176 ways to choose it. Altogether we conclude 

that  the number of choices for G in this case is at most 

51~  < n .  2 c ( ~  )2 
n .  log--~-z " ~ _ , 

where c is some absolute constant. This implies the required conclusion. 

CASE 2: Suppose that  n > 2 t4/5. 

Set b = x/t. Let A be the largest G-invariant subset of ~ such that  G acts on 

A as a permutat ion group A _< Sym(A) satisfying the conditions of Lemma 2.1. 

Then every normal subgroup of A can be generated by at most 3v~ elements. 

CLAIM: ] ~ \ A ]  < 21o~;n 
-- log t--7" 

To show this, denote the orbits of G on ~ \ A  by ~1, . . . ,~2k.  Let mi = [~2il 

and m = ]~ \ A]. Let G~ _< Sym(~t~) be the permutat ion group which G induces 
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on Yt~ (1 < i < k). Let ft~ be a partition of ~t~ into blocks of imprimitivity for 

Gi, and let G~ be the permutation group induced on ~ by the setwise stabiliser 

of fl~ in G. Then G~ is a primitive subgroup of Sym(Ft~), and for fixed i the 

permutation groups G~ are all equivalent. 

Fix i and suppose first that (for some j ,  equivalently for all j)  G~ does not 

contain t l t ( ~ ) .  By a well known result of Praeger and Saxl [PS], the order of a 

primitive permutation group of degree l not containing At cannot exceed 4 t. It 

follows that  IG~I _< 4 In~l. Therefore 

IG~[ ~_ 4"~'(mJ2)! <_ 4m~(t/2) '~,/2 = (8t)m~/2. 

Suppose now that  G~ does contain Alt(fl~) (for all j) .  Then by the choice of 

A, fli has a partition into blocks ~t{ of size 2 ___ bi _< v~. We have 

IGil <_ (b~!)'~'/b~(m~/bi)! <_ ((bi)!rnJbi) "~'/b' = ( (h i -  1)!m~) m'/b~. 

Since bi _< v/t and m~ ~ t, it follows that (b~ - 1)!m~ < t b~/2 (recall that  t is 

large). Therefore IGil <_ (tb~/2) "~/b~ = t m'/2 in this case. 

We see that, in any case, we have IGil <_ (St) ml/2. 

Let B = G a \ / ' ,  the permutation group which G induces on f~ "- A. The above 

discussion shows that  

IBI ___ H IG I ___ H(st)m /  = (st) 
i i 

Since ]G I _< IBIISt_,~I <_ (8t)'~/2(t - m)! we obtain that 

t! (t/4) m 2- ~ 
n = Is " C l  >_ ( t  - = ( 

proving the claim. 

Note that,  with the above notation, G is a subdirect product of A < St -m and 

B ~ Sin. Therefore G contains the group N = (G N A) • (G N B), G ~ A is a 

normal subgroup of A and G I N  ~- A / G  N A. 

Now, there are at most t _< n ways to choose IAI, and given IAI = t - m 

there are at most ( t )  < n ways to choose A (recall that G <_ S m •  St-m).  We 

see that  the number of choices for A is at most n 2. Using the above claim we 

conclude that  the number of choices for G n B is at most 2 a(21~176 By 

Lemma 2.1, both G n A and G I N  (being isomorphic to a quotient of A) can 
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be generated by 3v/t elements. In particular we have at m o s t  (t!) 3x/~ choices for 

G N A. Assuming G N A, G ;3 B are both given, N is determined, and so G can be 
~t4/5 chosen in at m o s t  (t!) 3v~ ways. Note that, using our assumption that n _> z , 

we obtain 
(t!)  6x/~ ~ 26t3/21~ t ~ 2 (l~176 

for large enough t. It follows that the number of choices for G given G n B cannot 

exceed 2 (l~ n~ log t) 2. Putt ing everything together we see that G can be chosen in 

at most 
n 2 . 2a(2 log n/( log t -7 ) )  2 . 2(log n~ log 02 

ways. Note that,  by our assumption on n, this expression is bounded above by 

2c(log n/log t) 2 (for a suitable c). This yields the desired conclusion. 

Proposition 2.2 is proved. | 

By considering subgroups of the form Hm • At-m where Hm ranges over all 

subgroups of rank m/4 of a given elementary abelian 2-subgroup of rank m/2 

in Sin, we see that Proposition 2.2 is best possible, apart from the value of the 

constant c; we also see that we must have c _> 1/16. The above argument can be 

used to obtain an estimate like c < 100. This can be drastically improved using 

the Classification Theorem. However, to obtain a sharp estimate for c (when t is 

large) seems to be a rather difficult problem. 

Proof of Theorem 1.3: We may assume n _< t! (otherwise an(At) = 0). Therefore 

n <_ 2 ? , which implies that log log n _< 2 log t. This yields 

2c(log n/log t) 2 ~ 24c(tog n~ log log n) 2 = n4C log n/( log log n) 2 " 

Therefore Theorem 1.3 follows from Proposition 2.2. | 

It is clear from the previous remark that the bound in Theorem 1.3 is best 

possible (apart from the value of the constant). 

3. Growth of  simple groups of Lie type 

We require the following description of subgroups of simple groups of Lie type. 

Let T be a simple group of Lie type and let To _< T be a quasisimple subgroup 

of Lie type. We say that To is a n a t u r a l l y  e m b e d d e d  s u b g r o u p  of T if the 

natural module of To is a subspace of the natural module of T. In particular, T 

and To have the same characteristic. We denote .the covering group of To by To. 



Vol. 96, 1996 SLOW SUBGROUP GROWTH 407 

PROPOSITION 3.1: There exists an absolute constant c with the following 

property: i f  T is a finite simple group of Lie type, and H is any subgroup of 

T, then there is a subgroup To <_ T satisfying 

(i) To = To is quasisimple and naturally embedded in T, or To = 1. 

(ii) To _< H. 
(iii) IT: To[ _< IT: HI c. 

Proof  It is well known that,  if T is a simple group of Lie type of Lie rank k 

having a subgroup of index n > 1, then IT[ _< n c where c is a constant depending 

on k (see [K1Li, 5.2.2] and [LaSe]). Hence, if k is bounded, then the conclusion 

holds with To = 1. 

It remains to deal with groups of large Lie rank. In particular we may assume 

that T is a classical group. We can also assume that the index of H is quite 

small, i.e: IT: H[ < IT[ 1/~ (where c is a fixed large constant). 

The existence of the quasisimple subgroup To now follows from the detailed 

descriptions of small index subgroups of classical groups, given in [Li, Section 

5] for SLn(q), and in [Li, Section 6] for other classical groups (in fact, not all 

the classical groups are discussed in [Li], but they can all be treated in a similar 

manner). | 

For the purpose of proving Theorem 1.2, we only need the case T -- PSLn(q). 

For completeness we analyse this case below, without relying on the results of 

[Li], which are quite technical. It will follow from our analysis that c -- 4 will 

do in this case, and that we have To/Z(To) ~- PSLk(q) for a suitable k. For 

simplicity we shall assume below that q > 3. 

PROPOSITION 3.2: Let k, n be integers such that 1 ~_ n /2  < k ~_ n. Let V be an 

n-dimensional linear space over Fq (q > 3) and let G = SL(V). Let H < G be a 

subgroup satisfying 
IH[ >_ qn2-1-(k-1)('~-k+l). 

Then there exists a k-dimensional subspace U <_ V such that 

H >_ SL(U). 

Proof." We use induction on n. For n -- 2 the result follows immediately from 

the fact that  SL2(q) has no proper subgroups of index less than q. So let n > 3. 

Note that  
IG: HI < q(k-1)(n-k+l) ~ qn2/4 ~_ qn(n-1)/2. 
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It follows from a theorem of Kantor [K, Theorem 1] that either (a) H = G, or 

(b) n -- 2m and H -- Sp(V), or (c) H is a reducible subgroup. It is easy to rule 

out case (b) by order considerations, since we have n _> 4 and IHI < q n2/2+n/2 < 

q n2-1-n2/4 in this case. It remains to consider the case where H is reducible. 

Let M < G be a maximal parabolic subgroup containing H. Then M is the 

stabilizer of a subspace W of V, and M _> SL(Vo), where Vo _< V is either W or 

a complement of W, and m = dim Vo >_ n/2. It is also clear that  m < n. We 

have IHI _< IMI < q n2-1-'~(~-m), and this implies m _> k by the assumption on 

]H I. Let Go -- SL(Vo) and No = Go r H. Since IM: Gol _< qn(~--m) and H _< M 

we see that  

IHol _> IHIq _> qt, 
where t = n 2 - 1 -  ( k -  1 ) ( n -  k + l ) - n ( n - m )  = m 2 + m ( n - m ) -  1 -  ( k -  1 ) ( n - k + 1 )  

> m  2 - 1 + ( k - 1 ) ( n - m ) - ( k - 1 ) ( n - k + l )  = m  2 - 1 - ( k - 1 ) ( m - k + l ) .  

Replacing V by Vo and H _<" G by Ho < Go and using the induction hypothesis 

we conclude that Ho > SL(U) for some k-dimensional subspace U _< Vo. Thus 

H _> SL(U) as required, m 

We note that  [K, Theorem 1] also deals with the cases q -- 2, 3. Combining 

that result with the above arguments it is easy to obtain a suitable modification 

of Proposition 3.2 for these cases. 

COROLLARY 3.3: Let G = SLy(q) (q > 3) and let H < G be a subgroup of  index 

at most q (n2-1)/4. Then G has a naturally embedded subgroup Go ~ SLk(q) for 

some k, such that Go <_ H and 

Iv: a0J < Iv: HI 3. 

Proo~ If n -- 2 then we must have H -- G. We can therefore assume that  

n _> 3. The assumption on IG: H I implies that there exists an integer k > n/2  

with the property that [G: H[ _< q(k-1)(n-k+l). Suppose k is maximal with 

this property. By Proposition 3.2 there is a subgroup Go _< H, Go - SLk(q), 

naturally embedded in G. We may assume that k < n. It is easy to see that  

IG: Go[ _< q n~-k2+l. Since k _> (n + 1)/2 we have 

3k(n - k) - (n 2 - k 2 + 1) = ( 2 k -  n ) ( n -  k) - 1 >_ O. 

Note that  [G: H I > qk(~-k) by the choice of k. Putt ing everything together we 

obtain 

IG: Go] < q '~-k2+1 < q3k(n-k) <_ ]G: HI 3, 
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as required. | 

Again, it is easy to obtain a slightly weaker result for q = 2, 3. 

ProoY of Proposition 1.5: It suffices to consider groups of Lie type and alternat- 

ing groups. Suppose T is a simple group of Lie type, H < T, and let To _< H 

and c be as in Proposition 3.1. Then d(To) < 2 and IT: Tol _< IT: HI r It is clear 

that 

d(H) <_ d(To) + loglH: T0l _< 2 + loglT: HI c-1 = ( c -  1)log IT: HI +2 .  

The result follows in this case. 

Now let T = At be an alternating group. We can assume that  t is large (say 

t _> 24). Let H < T. We shall show that  d(H) < log IT: H I. 

CASE 1: IT: H I _> 2 t/2. Note that  r(At) ~ t/2 by a result of A. McIver and 

P. M. Neumann [MN]. Hence d(H) <_ t/2 <_ log IT: H I. 

CASE 2: IT: H I < 2 t/2. Then, by a previously quoted result from [Li], there is 

an integer m < t/2 and a subgroup Hm <_ Sm such that 

H,~ • At-m <_ H <_ Sm • St-,~, 

and IH: Hm • At-ml ~ 2. Note that d(Hm) <_ m/2 by [MN]. It follows that  

d(H) < d(H,~) + d(At-rn) + 1 < m/2 + 3. 

Now, we have IT: H I _> ( t )  _> 2m/2+3 (where the last inequality follows from our 

assumption on t). Thus the inequality d(H) < log IT: H I also holds in this case. 
| 

We note that  the proof that  r(At) <_ t/2 applies the Classification Theorem. 

However, an elementary proof of Proposition 1.5 is easily obtained by using 

Jerrum's bound r(At) ~ t - 1 instead [Jer]. In fact it can be shown that,  if 

T is alternating, then a slightly sharper bound on d(H) holds. 

Proof of Theorem 1.4: In view of Theorem 1.3 and the Classification Theorem it 

suffices to deal with simple groups of Lie type. Given T and H with IT: H I -- n, 

let To _< H and c be as in Proposition 3.1. Denote the Lie rank of T by k. 
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CLAIM: There are O(k 2) choices for To up to conjugacy in T. 

Indeed, if To = 1 there is nothing to prove, so suppose To = To is quasisimple 

and naturally embedded in T. It is easy to verify that T has O(k 2) orbits in its 

action on the subspaces of its natural module. Now, given the natural module U 

for To, there are O(1) choices for the subgroup To _< T. This proves the claim. 

Counting the subgroups H up to conjugacy, we may assume that  there are 

O(k 2) choices for the subgroup To _< H. The information on the minimal degrees 

of permutation representations of groups of Lie type (cf. [K1Li, 5.2.2], [LaSe]) 

yields immediately k _< n (this is a very crude bound). Now, given To, H will be 

obtained by adding to To at most d = log IH: To] _< log IT: HI c-1 = ( c -  1) logn 

generators xl, . . . ,Xd. Replacing each x~ by x~ti (t~ E To) will not change the 

resulting group. Thus, given To there are at most IT: To] (c- 1) log,~ _< n~(~- 1) log n 

ways to choose H. Putt ing everything together we see that 

an(T) ~ n. c'n 2. n c(c-1)l~ 

This completes the proof. 

Remark: By considering elementary abelian p-subgroups of a group T of Lie 

type in characteristic p (for fixed p), we easily see that the bounds in Theorem 

1.4 and Proposition 1.5 are best possible (apart from the values of the constants). 

4. Profinite completions 

Let G = IJn>5Sn" G i v e n n  ~ 5 define Tn,an E Sn byTn = (1,2) a n d a n  = 

(1, 2 , . . . ,  n). Consider T = (r~)~>5 and a = (a~)n>5 as elements of G, and let F 

be the abstract subgroup they generate. 

For a set J of integers exceeding 4, let F j  be the projection of F to G j  = 

YIneg Sn. Let F ~ be the intersection of F j  with Aj = I'InEj An. Note that  

there exists a homomorphism r F j :  ~ 1-IneJ Sn/An whose kernel is F ~ and 

whose image is an elementary abelian 2-group of rank at most 2. It follows that  

IF j :  F~ < 4, so F~ is a finitely generated group. 

PROPOSITION 4.1: F ~ --- Z x I'InEjAn" 

Proo~ We first establish this for J = {n E Z: n > 5}. 

For i > 5 let 

A i = ( T ,  O ' T O ' - - I ,  . . . , 6ri--2Ta--({--2)>. 
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Set also A ~ = Ai N tin>5 As. 

We claim that  the groups Ai are all finite. Indeed, the projection of A~ to Sn 

is the group generated by (1, 2), (2, 3 ) , . . . ,  (j - 1 , j )  where j = min(i, n). If  i > n 

these elements generate Sn, but for n k i they generate a copy of S~ inside Sn. 

Furthermore, it is easy to see that  the projection of Ai into rI~>i Sn is a copy of 

S~ embedded diagonally in rL>n s~. This already implies that  Ai is finite. Since 
i for n < i, An are distinct finite simple groups, we conclude that  A ~ = rI~=5 An, 

embedded in rIn~5 A~ by the map (Xh, x 6 . . . ,  xi) H (xh, x 6 , . . . ,  xl, x~, x l , . . . ) .  

Let L = U~>5 Ai. Then L is a locally finite group and by the definition of the 

A~'s we have 

L < a-lL(7 <<_ a -2La  2 <<_ . . .  <_ o'-JLo "j < " ' ' .  

Let P = Uj>0 a-3L~ Then P is also locally finite, and P <1 F. In fact P is 

the normal closure of v in F. Thus F / P  is a cyclic group, generated by the image 

of c~. Let K = F be the profinite completion of F. 

CLAIM: We have P = L in K.  

It  suffices to prove that  for every finite quotient F of F, the images of P and 

L in F coincide. Let lr: F ----+ F be a projection. Then r~(L) < rc(a-lLa) since 

n < ~r-lna. But 7r((r-lLa) = rt(a)-lrr(L)rr(a) which has the same order as 

r~(L). We conclude that  rr(L) = 7r(a-lLa). It  follows in a similar manner that  

rr(L) = 7r(a-Jna j) for all j ,  so rr(L) = rr(P) as required. 

Now, set 

L ~  = ~ , 

i>5 

and let 

pO = U ~176176 
j_>o 

It  follows in a similar manner that  L ~ = p0 in K.  

Since F / P  ~ Z we have K/-fi  ~- Z. Since F ~ has finite index in F it follows 

that  F ~ --- F ~ and F ~  ~ ~ Z. 

CLAIM: L 0 ~ l--In>5 An. 

To show this note that,  by the definition of L ~ every finite quotient of L ~ is 

a quotient of A/~ for some i. By the structure of A ~ such a quotient is a direct 

product of alternating groups, each occurring at most once. 
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Next, L ~ is dense in 1-i,~>5 An. Therefore, letting r F ' 1-In>5 S~ be the 

map induced by the embedding r F l-I~=5 n, we obtain ~(~-'6)-- [I~>5 Am. 

Therefore L ~ has 1-In>_5 An as a quotient. The information on the composition 

factors of the finite images of L ~ enables us to deduce that the kernel is trivial, 

so  

- I I  
L 0 ,.~ A n 

n>5  

where the isomorphism is given by r This proves the claim. 

Let Ir = r Then ~r is a monomorphism from L to 1-I~>5 S~, ~r(L) = r 

(since r �9 ~r(L)). We also have It(L): ~r(n---ff)l = 4. Consider the following 

exact sequence: 

(1) 1 ~ L = P  ~F---+Z ~1. 

It is clear that  the map 7r-1r F ~ L acts as identity on L. This shows that  

F ~ =L• 
It follows now that F ~'6 = Z x l-ln~5 An, as asserted. 

It remains to prove the proposition for genera] subsets J. We need the 

following. 

CLAIM: Let F be a discrete group and F its profinite completion. Let H be a 

closed normal subgroup of ]~ with the property that H N F is dense in H. Then 

the profinite completion of F/(H N F) is isomorphic to F/H. 
The claim follows easily from the universal property of the profinite completion 

functor. Indeed, given a profinite group G and a homomorphism ~: F/(FDH) 

G, we obtain a natural homomorphism F ) G which we denote by r Now, 

can be extended to r F ~ G, and the kernel of r contains F N H. Since the 

kernel is closed we see that Net(C) D F n g = g .  Therefore r factors through 

F/H, and the claim follows. 

To show that  F~j = Z x l-I ,eJ An it now suffices to show that F ~ nYIneJr A,~ is 

dense i n  HnEj~An, where J~ = { 5 , 6 , 7 , . . . } \ J .  For this it suffices to 

show that  F~ N An = An, where A,  is identified here with the n th  
0 component of 1-Ii>5 Ai. Recall that An+ 1 equals the set of elements of the form 

0 (Xb, x6 , . . . ,  Xn, xn+l, X,+l , . . . ) -  Thus An <_ A,+I  _< F ~ which is what we need. 

Proposition 4.1 is proved. I 

Similar arguments give rise to the following result (based on a group 

constructed in [LW]). 
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PROPOSITION 4.2: Let q be a fixed prime power. Then for every subset J C_ 

{n E Z: n _> 2} there exists a finitely generated discrete group F ( J )  such that 

r (J )  - ~ • 1-I PSL~(q). 
nCJ 

Proo~ Given n _> 2, let a , , /3n  E PSLn(q) be the images of the matr ices 

1 1 0 0 . . .  0 1 0 0 0 . . .  0 

0 1 0 0 . . .  0 1 1 0 0 - . .  0 

0 0 1 0 . . .  0 0 0 1 0 . . .  0 
and 

0 0 0 0 .-- 1 0 0 0 0 . . .  1 

Choose A E Fq such tha t  Fq = Fp[A] and let 7~ r PSL,,(q) be the image of the 

matr ix  
A 0 0 0 . . .  0 
0 ,)1-1 0 0 " ' "  0 

0 0 '1 0 . . .  0 

0 0 0 0 . . .  1 

Finally, we let 6,  E PSL~ (q) be the image of the matr ix  

0 1 0 0 . . .  0 

0 0 1 0 . . .  0 

0 0 0 1 - . .  0 

0 0 0 . . .  0 1 

( - 1 )  " - ~  0 0 0 0 0 

Now, let G = 1-In>2 P S L ,  (q) and let F be the abstract  subgroup of G generated 

by a = ( an ) , / 3  = (/3n), ~ /= ('Y~) and 5 = (Sn). 

Clearly a,/3, 7 generate a copy of PSL2(q) in G, which we denote by A 2. For 

i > 2 let 

Ai = (A2, ~A26-1,.. . ,  6~-~A2~-(i-2)). 

Induc t ion  on i shows tha t  the project ion of A~ to P S L ,  (q) is surjective for n < i, 

and yields a diagonal copy of PSL~ (q) for n _ i. As before we deduce tha t  

A~ = { (x2 ,x3 , . . . , x~ ,x~ ,x~ , . . . ) :  xm E PSLm(q) for all m}. 
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In particular, Ai is a finite subgroup of F. 

Let L = Ui>2 Ai. Then 

L <_ (~-1L5 <_ ...  <_ ~-Jn~ j (_.... 

and P = Uj>0 6-YLSJ is a locally finite normal subgroup of F (which coincides 

with the normal closure of A2). We see that F/P  is generated by the image of 6. 

As in the proof of Proposition 4.1 we obtain L = P in F and 

F ~ = Z • PSL~ q). II ( 
n~2 

Similarly, given J C {2, 3, 4 , . . .}  we take H = F M I],~ejc PSL~(q) and set 

r(J) = r / H .  

We then have 

r(J) = r / g  ~- r/- H PSLn(q) - Z • 1-I PSL~(q), 
n E J  c n E J  

as required. I 

5. P r o o f  o f  m a i n  results  

We start  with a crude result concerning the subgroup growth of a direct product. 

LEMMA 5.1: Let A, B be groups and let n be a positive integer. Then 

(1) sn(A • B) < sn(A)2sn(B)2n ~(B). 

(2) sn(A • Z) ~ n3sn(A) 2. 

Proo[: Let H _< A •  be asubgroup of index at most n. Let K, L b e  the 

projections of H to A, B respectively, and let Ko, Lo be the intersections of H 

with A, B respectively. Then Ko <1 K < A and IA: Kol _< n, and similarly 

Lo ~ L < B and IB: Lol _< n. In particular, there are at most sn(A)2sn(B) 2 

choices for K, Ko, L, Lo. Given these subgroups, H will be determined once we 

choose a complement to K/Ko  in K/Ko • L/Lo, and the number of ways to do 

that  is I Hom(L/Lo, K/Ko)I. Since 

] Hom(L/Lo, K/Ko)I <_ IK/Kol d(L/L~ <_ n ~(B), 

part 1 follows. Part  2 is a consequence of part 1. I 
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It follows from part 2 of the above lemma that (unless A is almost cyclic) A 

and A x Z (or A • Z in the profinite case) have the same growth type. 

We denote by m(G) the minimal index of a proper subgroup of G. 

LEMMA 5.2: Let Ti (i >_ 1) be pairwise non-isomorphic finite simple groups, and 

let f:  N - -~  • be a non-decreasing function satisfying limn...,~ f ( n )  = c~. Then 

there exists a subset J C_ N such that, if  G = I-Ijcj  Tj, and j (n )  is the maximal 

index j E J such that m(Tj)  <_ n, then 

an(Tj(n)) <<_ an(G) < sn(Tj(n))Zn f(n) for ali n. 

Proof." Choose an increasing series {ji} of positive integers such that,  for all 

k > 1, we have 

(2) m(Tj ) >_ s(Tj ,  x . . .  • 

and 

(3) f (m(Tjk ) )  >_ r(Tjl x . . .  x Tjk_a ) + 1. 

Let J be the set consisting of the integers ji, and let G, n, j (n )  be as in the 

lemma. Then all index n subgroups of G contain YIjEj,j>j(n)Tj, which means 

that 

an(G) = an(Tj  •  • Tj ), 

where jk = j (n) .  Set A = Tjk and B = Tjl x . . .  x Tjk_ ~. Using Lemma 5.1 we 

see that  

an(G) = an(A • B) <_ sn(A)2sn(B)2n r(B). 

By (2) and (3) we have 

sn(B)  2 < s(B) 2 < m(A)  < n and r(B)  < f ( m ( A ) )  - 1 < f (n )  - 1. 

This yields 

an(G) <_ sn(A) 2 . n f(n), 

which proves the upper bound. The lower bound is trivial. 

Proof of Theorem 1.1: Applying Lemma 5.2 with f ( n )  = log n/(log log n) 2 we 

can chose an infinite subset J of integers exceeding 4 such that 

an ( U  A j )  ~ sn(Aj(n))2n l~176176 . 
\ j e J  ] 
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Applying Theorem 1.3 we see that  

sn(Aj(n)) <_ n . n c l ~ 1 7 6 1 7 6  

It follows that  an(HAj)  nCo n, lo lo n   
\JeJ / 

for a suitable C > c. In view of the lower bound in Lemma 5.2 and the remark 

at the end of Section 2, it is clear that  I-[jey Aj has growth type ~ l~176176 

Now, consider the discrete group F ~ defined in Section 2. The subgroup growth 

of a group coincides with the subgroup growth of its profinite completion, so 

applying Proposition 4.1 we obtain 

By the remark following Lemma 5.1 we see that r ~ and 1-Ijey Aj have the same 

growth type. 

The proof is complete. 

Proof of Theorem 1.2: This follows in a similar manner, by combining Lemma 

5.2, Proposition 4.2 and Theorem 1.4. 

Proof of Corollary 1.6: Let us show that  the abstract groups constructed above 

have polynomial growth of subnormal subgroups. As usual we may replace our 

abstract groups by their profinite completions. As in Lemma 5.1 we obtain 

a~'~(A x Z) < n3a~'~(A) 2. It therefore suffices to prove that,  if G = YIjeJ Tj 

where J is constructed as in the proof of Lemma 5.2, then a~'~(G) <_ n c for 

some c. 

Since every normal subgroup of G has the form r l jeJ ,  Tj for some subset 

j r  C_ J,  it follows by induction that  every subnormal subgroup of G has a similar 

form. Let H be a subnormal subgroup of index n in G. Then H = 1-[jey, Tj 

where J \ J~ is finite. Let j be the maximal element of J \ J'. Then ]Tjl _< n, 

and condition (2) above readily implies ITjl >_ 2 j. Therefore j _< log n, so given 

n there are at most log n ways to choose j .  Once j is given there are at most 

2 j -1  ( n ways to choose the other elements of J \ J~, which together determine 

H. This yields 

a~'~(G) < n logn .  
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The result follows. 

In fact, using more delicate arguments we can prove the following. 

PROPOSITION 5.3: Given any function f:  N - -~  N with limn_,~ f ( n )  

there exists an infinite subset J C {n E Z: n ~ 5} such that  

z OO, 

,14 0 a n ( F j ) ~ f ( n )  f o r a l l n .  

Proof." We sketch the argument, leaving the verification of some details to the 

reader. Since there are no non-trivial homomorphisms from a direct product 

of nonabelian simple groups to a cyclic group, it follows that  every subnormal 

subgroup of Z x rIjc=j Aj  is of the form K x L, where K < Z and L ~  HjEJ Aj .  

We see that  

44 0 ~ ~,X Aj  ~ d Tj a n (F j )  : a n : . 
jC=J din 

To estimate the right hand side we argue as in the proof of Corollary 1.6. It 

is easy to verify that,  if J = {jk}k>l and jk grow sufficiently fast (given the 

function f ) ,  then ~]dlnad ([ IkTj~)  <_ f ( n ) .  The result follows. | 

We conclude that,  even if we assume that a~n<(G) grows extremely slowly (e.g. 

a ~ ( G )  <_ log log log n), still the group G need not be virtually soluble, or linear. 
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